
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/272179469

Manifold Learning Approach to Curve Identification with Applications to

Footprint Segmentation

Conference Paper · December 2014

DOI: 10.1109/CIMSIVP.2014.7013288

CITATION

1
READS

219

6 authors, including:

Some of the authors of this publication are also working on these related projects:

ConservationFIT: Developing footprint identification algorithms to monitor endangered species View project

CINEMa Project View project

Namita Lokare

North Carolina State University

9 PUBLICATIONS   8 CITATIONS   

SEE PROFILE

Zoe Jewell

SAS Institute and Duke University

46 PUBLICATIONS   260 CITATIONS   

SEE PROFILE

Edgar Lobaton

North Carolina State University

69 PUBLICATIONS   977 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Zoe Jewell on 13 February 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/272179469_Manifold_Learning_Approach_to_Curve_Identification_with_Applications_to_Footprint_Segmentation?enrichId=rgreq-8f196f8be1cc39f74b9dc6a6ea0d3657-XXX&enrichSource=Y292ZXJQYWdlOzI3MjE3OTQ2OTtBUzoxOTY0NzAzMDIwODkyMjNAMTQyMzg1MzU3OTE5NQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/272179469_Manifold_Learning_Approach_to_Curve_Identification_with_Applications_to_Footprint_Segmentation?enrichId=rgreq-8f196f8be1cc39f74b9dc6a6ea0d3657-XXX&enrichSource=Y292ZXJQYWdlOzI3MjE3OTQ2OTtBUzoxOTY0NzAzMDIwODkyMjNAMTQyMzg1MzU3OTE5NQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/ConservationFIT-Developing-footprint-identification-algorithms-to-monitor-endangered-species?enrichId=rgreq-8f196f8be1cc39f74b9dc6a6ea0d3657-XXX&enrichSource=Y292ZXJQYWdlOzI3MjE3OTQ2OTtBUzoxOTY0NzAzMDIwODkyMjNAMTQyMzg1MzU3OTE5NQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/CINEMa-Project?enrichId=rgreq-8f196f8be1cc39f74b9dc6a6ea0d3657-XXX&enrichSource=Y292ZXJQYWdlOzI3MjE3OTQ2OTtBUzoxOTY0NzAzMDIwODkyMjNAMTQyMzg1MzU3OTE5NQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-8f196f8be1cc39f74b9dc6a6ea0d3657-XXX&enrichSource=Y292ZXJQYWdlOzI3MjE3OTQ2OTtBUzoxOTY0NzAzMDIwODkyMjNAMTQyMzg1MzU3OTE5NQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Namita_Lokare?enrichId=rgreq-8f196f8be1cc39f74b9dc6a6ea0d3657-XXX&enrichSource=Y292ZXJQYWdlOzI3MjE3OTQ2OTtBUzoxOTY0NzAzMDIwODkyMjNAMTQyMzg1MzU3OTE5NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Namita_Lokare?enrichId=rgreq-8f196f8be1cc39f74b9dc6a6ea0d3657-XXX&enrichSource=Y292ZXJQYWdlOzI3MjE3OTQ2OTtBUzoxOTY0NzAzMDIwODkyMjNAMTQyMzg1MzU3OTE5NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/North_Carolina_State_University?enrichId=rgreq-8f196f8be1cc39f74b9dc6a6ea0d3657-XXX&enrichSource=Y292ZXJQYWdlOzI3MjE3OTQ2OTtBUzoxOTY0NzAzMDIwODkyMjNAMTQyMzg1MzU3OTE5NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Namita_Lokare?enrichId=rgreq-8f196f8be1cc39f74b9dc6a6ea0d3657-XXX&enrichSource=Y292ZXJQYWdlOzI3MjE3OTQ2OTtBUzoxOTY0NzAzMDIwODkyMjNAMTQyMzg1MzU3OTE5NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zoe_Jewell?enrichId=rgreq-8f196f8be1cc39f74b9dc6a6ea0d3657-XXX&enrichSource=Y292ZXJQYWdlOzI3MjE3OTQ2OTtBUzoxOTY0NzAzMDIwODkyMjNAMTQyMzg1MzU3OTE5NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zoe_Jewell?enrichId=rgreq-8f196f8be1cc39f74b9dc6a6ea0d3657-XXX&enrichSource=Y292ZXJQYWdlOzI3MjE3OTQ2OTtBUzoxOTY0NzAzMDIwODkyMjNAMTQyMzg1MzU3OTE5NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zoe_Jewell?enrichId=rgreq-8f196f8be1cc39f74b9dc6a6ea0d3657-XXX&enrichSource=Y292ZXJQYWdlOzI3MjE3OTQ2OTtBUzoxOTY0NzAzMDIwODkyMjNAMTQyMzg1MzU3OTE5NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Edgar_Lobaton?enrichId=rgreq-8f196f8be1cc39f74b9dc6a6ea0d3657-XXX&enrichSource=Y292ZXJQYWdlOzI3MjE3OTQ2OTtBUzoxOTY0NzAzMDIwODkyMjNAMTQyMzg1MzU3OTE5NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Edgar_Lobaton?enrichId=rgreq-8f196f8be1cc39f74b9dc6a6ea0d3657-XXX&enrichSource=Y292ZXJQYWdlOzI3MjE3OTQ2OTtBUzoxOTY0NzAzMDIwODkyMjNAMTQyMzg1MzU3OTE5NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/North_Carolina_State_University?enrichId=rgreq-8f196f8be1cc39f74b9dc6a6ea0d3657-XXX&enrichSource=Y292ZXJQYWdlOzI3MjE3OTQ2OTtBUzoxOTY0NzAzMDIwODkyMjNAMTQyMzg1MzU3OTE5NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Edgar_Lobaton?enrichId=rgreq-8f196f8be1cc39f74b9dc6a6ea0d3657-XXX&enrichSource=Y292ZXJQYWdlOzI3MjE3OTQ2OTtBUzoxOTY0NzAzMDIwODkyMjNAMTQyMzg1MzU3OTE5NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zoe_Jewell?enrichId=rgreq-8f196f8be1cc39f74b9dc6a6ea0d3657-XXX&enrichSource=Y292ZXJQYWdlOzI3MjE3OTQ2OTtBUzoxOTY0NzAzMDIwODkyMjNAMTQyMzg1MzU3OTE5NQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Manifold Learning Approach to Curve Identification with
Applications to Footprint Segmentation

Namita Lokare∗, Qian Ge∗, Wesley Snyder∗, Zoe Jewell†, Sky Allibhai† and Edgar Lobaton∗
∗Department of Electrical and Computer Engineering
North Carolina State University, Raleigh, NC 27606

Email: ndlokare@ncsu.edu, qge2@ncsu.edu, wes@ncsu.edu, edgar.lobaton@ncsu.edu
†Wildtrack.org, Monichque, Portugal 8550-909

Email: wildtrack.footprinting@gmail.com

Abstract—Recognition of animals via images of their foot-
prints is a non-invasive technique recently adopted by researchers
interested in monitoring endangered species. One of the chal-
lenges that they face is the extraction of features from these
images, which are required for this approach. These features are
points along the boundary curve of the footprints. In this paper,
we propose an innovative technique for extracting these curves
from depth images. We formulate the problem of identification of
the boundary of the footprint as a pattern recognition problem
of a stochastic process over a manifold. This methodology has
other applications on segmentation of biological tissue for medical
applications and tracking of extreme weather patterns. The
problem of pattern identification in the manifold is posed as a
shortest path problem, where the path with the smallest cost is
identified as the one with the highest likelihood to belong to the
stochastic process. Our methodology is tested in a new dataset
of normalized depth images of tiger footprints with ground truth
selected by experts in the field.

I. INTRODUCTION

Identification and tracking of endangered species is of
great concern to environmental biologists due to the constant
exploitation of global biodiversity [1]. In addition to techniques
for animal identification from natural images [2], researchers
have recently started using images of footprints [3]–[7] to mon-
itor endangered species. An inexpensive non-invasive Footprint
Identification Technique (FIT) [4], [7] makes use of features
selected from images of animal footprints in order to identify
individual animals (see Fig. 1). One of the main obstacles to
efficient and cost-effective data collection is the manual ex-
traction of these image features located along the boundary of
the footprint which introduces human variability and requires
training, limiting the number of volunteers involved with these
efforts.

We think of this problem as the identification of a curve
of interest in an image, which we call Interest Curve. For our
motivating application, the interest curve is a boundary of a
footprint. Similar tasks are also present in other application
areas such as the medical (e.g., segmentation of the interface
between various biological tissues) and environmental fields
(e.g., tracking weather patterns such as hurricanes using remote
sensing data). All of these problems involve the identification
of a pattern in some imaging data along a curve of interest.

In this paper, we introduce a framework for solving this
identification problem by modeling the interest curves as a

*This work was partially supported by the National Science Foundation
under award CNS-1239323.

Fig. 1. Animal Identification via footprint recognition. Color and depth
images of footprints are captured (left) and features along their boundary are
selected (right). We only make use of the depth images for our analysis.

stochastic process on a manifold specified by the space of
variations of the imaging pattern around the curves. Fig. 2
illustrates the pipeline for our method. We locally approx-
imate the shape of the manifold by using an eigen-basis
decomposition of previously observed patterns and pose the
pattern identification problem as a shortest path problem in a
graphical representation. The constructed combinatorial model
captures imaging information as well as geometric information
(arc-length and curvature in particular) of a set of feasible
curves in the space. An interest curve is selected by finding
the path with the highest likelihood to be generated by the
defined stochastic process. This path is then refined using
variational method. We test our method in a unique database
made available to the scientific community; it is composed of
depth (and color) images of tiger footprints with ground-truth
segmentation provided by experts in the field [12].

The rest of the paper is organized as follows: section II
discusses some relevant work in the area of segmentation,
section III presents the procedure used to capture and nor-
malize the footprint images, section IV provides a formal
mathematical description of our problem, section V introduces
our stochastic model of interest curves on a manifold, section
VI provides a discrete formulation of the general approach,

Fig. 2. Pipeline of the method. Training images and interest curves are used
to learn a manifold model of the data. The identification of an interest curve
in an image is posed as a shortest path problem in a graphical model.



Fig. 3. Segmentation of footprint by traditional algorithms (from left to right): Input color image, Normalized Cuts [8], Graph Cuts [9], KM [10], and DRLSE
[11] results. Similar results are observed for depth images.

section VII illustrates how the identification of interest curves
is posed as a shortest path problem, section VIII describes
the refinement process to obtain a continuous curve, section
IX presents our experimental results, and section X provides
some final remarks.

II. RELATED WORK

Application areas such as medical imaging [13], [14],
object detection [15] and recognition [16], [17] make image
segmentation a well-studied problem in image processing
and computer vision. Numerous segmentation algorithms have
been proposed over the last few decades and they differ
depending on different applications or different modalities.
Some particularly popular techniques are active contours, level
set methods, and graph-cut based approaches.

A level set method was proposed by Osher and Sethian [18]
for fronts propagating in 1988. By representing the surface
as a level set, the topological changes of boundaries can
be easily handled [18]. Inspired by this, Caselles et. al.
[19] presented a geodesic active contours model for object
detection of boundaries, and Malladi et. al. [20] introduced a
shape modeling scheme for complex shape recovering. Both
algorithms require solving an energy minimization problem.
However, they may converge to a local minimum. In [21], Chan
and Vese proposed a new active contours model for binary
segmentation, which has fewer number of local minima by
using a region-based stopping function instead of an edge-
based stopping function as [19], [20]. In [22], the authors
proposed a modification to their method having a multiphase
level set framework to segment images with more than two
regions. In 1995, Cootes et. al. [23] introduced Active Shape
Models to incorporate model specificity along with an iterative
refinement algorithm to fit the data consistently with the
training set. Their method was different from the active contour
model in that it could only deform to fit the data in ways
consistent with the training set. Sundararamoorthi et. al. [24]
introduced an automatic region based active contour algorithm,
using an adaptive “lookout” region which depends on the
statistics of the data, estimated during the detection process.

Graph based segmentation considers segmentation as a
graph partitioning problem [25]. In 1997, Shi and Malik [8],
[25] first proposed normalized cuts criteria for segmenting a
graph. Recently, a modification of the normalized cuts method
with priors was proposed in [26]. In 2001, another graph based
segmentation, interactive graph cuts segmentation, which in-
corporates user hard constraints and soft constraints to find
a globally optimal segmentation through a min-cut/max-flow

algorithm in [27] was proposed by Boykov and Jolly [9]. Later
on, several segmentation algorithms based on graph cuts have
been developed. Rother et. al. [28] introduced an extension to
graph cuts, GrabCut, which requires fewer interactions. In the
work of Salah et. al. [10], images are transformed implicitly
by a kernel function, which makes unsupervised graph cut
segment applicable. There are also several other approaches
that fall in this category [16], [17], [29], [30].

Footprint segmentation can also be viewed as a pattern
recognition problem for which template matching could be
applied. These techniques apply cross-correlation algorithms to
find the location of a reference image or an object of interest in
a scene. The traditional methods are however computationally
expensive. Choi and Kim [31] propose a fast, rotation invariant
algorithm through a hierarchical approach. Another fast pattern
matching scheme introduced by Hel-Or et. al. [32] allows
matching under non-linear tone mapping.

In recent years, because of the increasing use of depth
cameras, a large number of segmentation algorithms combin-
ing depth and color information have been proposed. In [33],
color information is used to enhance depth image and then
a graph cut based segmentation method is applied for image
retargeting. In [34]–[36], RGB-D image segmentation is used
for indoor scene understanding. In [37], a planar segmentation
algorithm using RGB-D images is proposed.

In Fig.3, we show segmentation results of four previous
algorithms. The test image shown in the first column is one
of the color images in our dataset. Columns 2-5 show the
segmentation results of Normalized Cuts [8], Graph Cuts
[9], KM [10] and DRLSE [11]. As shown in Fig. 3, the
first three methods failed to segment the footprint. DRLSE
segmented the toes correctly but not the pad. Also, this method
is highly dependent on its initialization, which can lead to
incorrect results unless a good initial contour is chosen. Similar
patterns were observed when segmenting the depth images.
These techniques are not suitable for our goal of automatic
segmentation of a footprint without any prior information built
into the model.

In [38], M. Turk and A. Pentland introduced an unsuper-
vised approach for face recognition using Eigenfaces. They
projected the face images onto a feature space to capture
the variation among the training images. In [39] Yang et
al. propose a color eigen-structure segmentation algorithm
which is designed to extract the desired objects with color
values close to the training samples. Our approach obtains
the segmentation of a footprint by learning local variations



of images using an eigen-based approach and refining it to
capture the boundaries. We propose an algorithm which does
not require initialization and is fully automated.

III. IMAGE CAPTURE AND PRE-PROCESSING

The images of tiger footprints were collected at the Car-
olina Tiger Rescue [40] from animals of known identity, sex,
and age to form a reference database. At this center, a path near
a fence was prepared using sand. The sand was prepared and
leveled before tigers were guided along this path using a bait.
Images were collected after the tigers were safely relocated.

A Microsoft Kinect depth sensor was used in the near mode
setting to capture RGB-D images. The images were captured
with color and depth image resolutions of 1280 × 960 and
640 × 480, respectively. The imaging sensor was mounted on
a tripod stand pointing to the floor and covered with a tarp to
avoid interference due to external light. A small battery oper-
ated light source was also mounted on the tripod in order to
avoid total darkness. The software provided a small bounding
box in the middle of the displayed images allowing for manual
centering and vertical alignment of the footprints. This was
done to facilitate the footprint identification procedure while
streamlining the data capturing.

Due to the variation of the perspective angle of the sensor
with respect to the ground plane of the footprint, we normalize
the images via a pre-processing step. First, a proper calibration
of the depth sensor is obtained using the toolbox by [41]. A
plane is fitted to the recovered 3D point cloud. We virtually
rotate the camera sensor so it is placed at a distance of
0.5 m away from the plane and looking straight down onto
it. New color and depth images are rendered by using this
normalized perspective in order to guarantee that the footprint
is centered and the images are taken from approximately the
same perspective. This normalization also reduces the amount
of training that would be needed for volunteers when acquiring
this data.

IV. PROBLEM FORMULATION

Our objective is to use a set of training images with a pre-
selected set of sample curves, which we call Interest Curves,
in order to identify similar patterns in a new test image. For
our application, we aim to identify the segmentation contour
for a footprint using depth image information.

As a formalism, let us define the training grayscale images
{In : R2 → R}Nn=1, each with a corresponding interest curve
γn : [0, 1] → R2. Given a test image I , our task is to
identify the location of the corresponding interest curve γ. For
a discrete version of the problem, we will consider each curve
γn = {γn,k}Kk=1 as a sampled version of the continuous curves
(i.e., γn,k := γn(tk) taken at some point tk), where K is some
fixed constant.

V. STOCHASTIC MATHEMATICAL MODEL

The proposed framework considers any interest curve γ as
the realization of a stochastic process parameterized by t ∈
[0, 1]. This process influences not only the shape of the curve
but the grayscale values in a neighborhood around them.

Fig. 4. Interest Curve Representation. Curve γ(t) and image I in the image
plane (top-left), and the corresponding graph of gt (top-right). Extracted values
of arc-length s(t), curvature κ(t) and gt represented as a path in the manifold
M .

First, we assume that any γ has two continuous derivatives
and that the images are square integrable (i.e., they belong to
L2). Given these assumptions, we extract from γ the tuple

( s(t), κ(t), gt(·, ·) ) , (1)

where s(t) ∈ R+ represents the arc-length, κ(t) ∈ R repre-
sents the curvature, and gt(·, ·) ∈ L2(Br) is a square integrable
function defined over a disk of radius r (see Fig. 4). The
function gt has the same values as I around a neighborhood
centered at γ(t). Note that (s(·), κ(·)) uniquely characterize
γ up to translation and rotation, and we think of them as
generated by independent stochastic processes.

Furthermore, we assume that all realization of the graph of
gt(·, ·) as a function of t ∈ [0, 1] (i.e., the set of points (t, gt))
lie on a manifold M in [0, 1] × L2(Br). By approximating
gt linearly around the mean ḡt of the stochastic process, we
can estimate M using an affine space Ma spanned by a set of
orthonormal bases {ψt,i(·, ·)}Di=1, where D is the dimension
of M . That is,

gt(x, y) ≈ ḡt(x, y) +
D∑
i=1

ψt,i(x, y)bi(t) (2)

where bi(t) are stochastic processes corresponding to the
coefficients of the basis expansion. Let b : [0, 1] → RD be
the function with components bi(t).

In our approach, we generate candidate curves from an
image, and select as an interest curve the one that maximizes
some likelihood. Hence, given a test curve η and an image
I with corresponding functions (sη, κη, gηt ), we will need
to determine the probability of it being generated by the
previously described stochastic process. This probability can
be expressed as:

P (η|J) = P (gηt ∈Ma , b
η|J) P (sη) P (κη). (3)

VI. DISCRETE MATHEMATICAL MODEL

In order to make our problem tractable, we generalize
the previous framework to a discrete sampled test curve
η = {ηk}Kk=1 in an image I .



Fig. 5. Image showing the neighborhood for a manually marked point
(left), mean subtracted neighborhood image (middle) and the eigen-images
corresponding to the largest four eigen-values for that point (right). As
expected the first eigen-image captures variation on the depth of the imprint
of the toe.

First, we define the discrete version of the tuple
(sη, κη, gη, bη). The arc-length sη = {sη(k,k+1)}

N−1
k=1 is speci-

fied by
sη(k,k+1) = ||ηk − ηk+1||. (4)

The curvature κη = {κηk}
N−1
k=2 is computed by defin-

ing κηk as the Menger curvature [42] between the points
{ηk−1, ηk, ηk+1}.

The image pattern gη = {gηk}Nk=1 is specified by letting gηk
equal to the image I over a small neighborhood of radius r
around ηk. Given that the basis functions {ψk,i}Di=1 are known
for all k = 1, · · · ,K, then we can specify bη = {bηk}Nk=1 by
letting

bηk,i = 〈gηk − ḡk, ψk,i〉 , (5)

where ḡk is the mean image at the k-th sample point and
〈f, h〉 =

∫ ∫
Br
f(x, y) · h(x, y) dx dy.

The manifold Ma is defined by taking an eigenimage [38]
based approach. All neighborhoods for the k-th point in the
provided training set of interest curves are used to compute
an average image ḡk and the D eigen-functions {ψk,i}Di=1 that
explain most of the variance in the image set are computed.
Fig. 5 shows four eigen-images of the neighborhood of a
sample point. We define the projection of gηk to Ma as

ĝηk = ḡk +

D∑
i=1

ψk,ibk,i. (6)

In order to quantify how close gη is from Ma, we specify
the error metric

E2
m(gη) =

N∑
k=1

〈gηk − ĝ
η
k , g

η
k − ĝ

η
k〉 . (7)

We also define measures Es and Eκ of deviation for arc-length
and curvature from their mean values. These quantities are
given by

E2
m(sη) =

N−1∑
k=1

||sη(k,k+1) − s̄(k,k+1)||2 (8)

and

E2
κ(κη) =

N−1∑
k=2

||κηk − κ̄k||
2, (9)

where s̄(k,k+1) and κ̄k are the mean arc-length and curvature
computed from the training data.

We define each term in Eqn 3 in terms of the error measures
as

P (gη ∈Ma , b
η|I) = Cm · e−wm·E

2
m(gη)

P (sη) = Cs · e−ws·E
2
s (s

η)

P (κη) = Cκ · e−wκ·E
2
κ(κ

η)

, (10)

where wm is a normalization weight for the manifold term, Cm
is a normalization constant, and similar definition are made for
the arc-length and curvature parameters.

Using these definitions, we have

(11)

arg max
η

P (η|I)

= arg max
η

P (gη ∈Ma , b
η|I) P (sη) P (κη)

= arg max
η

log (P (gη ∈Ma , b
η|I P (sη)P (κη))

= arg min
η

(wmEm(gη) +

wsEs(s
η) + wκEκ(κη) )

Thus, finding the curve with the maximum likelihood is
equivalent to finding the curve η∗ with smallest weighted sum
of error measures.

VII. FINDING THE OPTIMAL DISCRETE INTEREST CURVE

Let us define the cost function for a discrete test curve η
to be

C(η) = wmEm(gη) + wsEs(s
η) + wκEκ(κη). (12)

Our objective is to identify the curve η∗ in an image I that
minimizes C(η). This is done by formulating the problem as
a shortest path problem in a graph. The approach is outlined
in Algorithm 1.

Fig. 6. Manifold error. A target feature point (left), its corresponding
reprojection error over the entire image (middle), and the set of candidate
points in red around the mean location from the training set in blue (right).

Fig. 7. Graphical model G for a closed interest curve with K = 4 points.
The graph is a K partite graph where the sets of candidate segments Qk

represent the nodes and the set of candidate triplets Ek specify the edges.



Algorithm 1 Finding Optimal Interest Curve
1: for k = 1 to K do
2: Compute E2

m,k(x) for all points x in the image I
3: Select points Pk = {pk,i}Nki=1 around the mean location

of the k-th point in the IC
4: end for
5: for k = 1 to K − 1 do
6: Set Qk = {}
7: Compute E2

s,k(i, j) for all pairs (i, j) where i =
1 · · ·Nk and j = 1 · · ·Nk+1

8: Store all (i, j) into Qk that have values of E2
s,k within

the specified bounds
9: end for

10: for k = 2 to K − 1 do
11: Set Ek = {}
12: for i = 1 to Nk do
13: Compute E2

κ,k(j1, i, j2) for all the pairs (j1, i) ∈
Qk−1 and (i, j2) ∈ Qk

14: Store all {(j1, i), (i, j2)} into Ek that have values of
E2
κ,k within the specified bounds

15: end for
16: end for
17: Construct a graph G with vertices and edges specified by
{Qk}K−1k=1 and {Ek}K−1k=2

18: Assign as weights to the vertices the corresponding sum
of the values of E2

m,k and E2
s,k

19: Assign as weights to the edges the corresponding values
of E2

κ,k
20: Let η∗ be the path with the lowest cost between all paths

starting at Q1 and ending at QK−1

Before we can find the optimal η∗ it is necessary to learn
the appropriate model from the training data. Parameters that
must be estimated include mean values for arc-length and
curvature, and the eigen-images used to represent Ma locally.

Algorithm 1 proceeds by first finding a set of candidate
points (lines 1:4) in the image, finding candidate segments be-
tween these points (lines 5:9), determining all feasible triplets
that give valid curvatures (lines 10:16), and then constructing
a graphical representation from which a shortest path solution
can be found corresponding to η∗ (lines 17:20).

The candidate points Pk are obtained by randomly se-
lecting points using a gaussian distribution around the mean
location for a point x found from the training set. The error
E2
m(x) is associated with how far a neighborhood around x

is from Ma. Fig 6 shows the error and candidate points for a
point x.

The set of candidate segments Qk, where each entry corre-
sponds to segments (pk,i, pk+1,j), are obtained by computing
a measure E2

s,k(i, j) of their offset from their mean value.
This quantity is essentially one of the terms from Eqn 8. The
candidate triples Qk are computed in a similar way where
E2
κ,k

(j1, i, j2) corresponds to the offset of the curvature of the
triplet (pk−1,j1 , pk,i, pk+1,j2) from its means (i.e., one of the
terms in Eqn 9). We remove some triples by computing the
angle between the edge segments formed by them, if the angle
does not satisfy the bound.

The graph G that is constructed is the dual graph of the
graph connecting all points in the collection {Pk}. This dual
construction is needed to accommodate the curvature cost and
constraints. Assuming that |Pk|= N , the graph G is a K − 1
partite graph with at most N2 vertices in each group and at
most N3 edges between adjacent groups. As observed in Fig 7,
we can also generalize this formulation to closed curves by
adding P1 at the end of G which turns it into a K partite
graph.

The final stage of our algorithm is to find the path with the
smallest cost in G. Note that we assign weights to the vertices
and edges corresponding to the different terms in the cost
function C(η). We then use a shortest-path algorithm to find
η∗. In order to accommodate for different sizes of toes between
smaller and larger animals we repeat the process over a few
scaled images and use the result which returns the minimum
cost.

VIII. REFINING THE INTEREST CURVE

So far, we have described how to provide an initialization to
the toes and the pad via the identification of a discrete interest
curve. Next, we describe how these contours are deformed
based on prior knowledge and gradient information.

We represent a family of contours in polar coordinates as
γ(θ) = (θ, r(θ)), where r(θ) is expressed in terms of a linear
combination of basis functions of the form:

r(θ) = r0(θ) + c0 +

N∑
n=1

c2n−1 cos(nθ) + c2n sin(nθ). (13)

The curve (θ, r0(θ)), which we refer to as the “base curve”,
is the polar representation of the interpolated η∗ using cubic
splines with respect to its center of mass. The vector of
coefficients c := [c0, c1, c2, · · · , c2N ]> contains the values
that will be optimized in our approach. We emphasize the
dependency of γ on these coefficients by writing γ(θ; c).

The set of coefficients that determine the maximum a
posteriori (MAP) estimate for the contour is defined by

ĉMAP (I) = argmaxc log (P (I|γ(·; c))P (γ(·; c))) , (14)

where I represents the depth image observed.

We make the assumption that

log (P (Ik|γ(·; c))) ∝
∫ 2π

0

wE,k(γ(θ; c)) dθ (15)

and

log (P (γ(·; c))) ∝ −λ

(
c20 +

N∑
n=1

c22n−1 + c22n
n2

)
, (16)

where wE,k : Ωk → R+ is a weight function associated with
edge information in the k-th footprint image. The parameter λ
was set to 1e− 4 for all our experiments.

In order to obtain wE,k we observe that we expect edges
in the depth map to overlap with the locations of the contour.
Furthermore, the gradient at these locations must be pointing
toward the center of the contour since points outside the region
of interest (either a toe or a pad) must have a depth value



Fig. 8. Samples and results from the footprint dataset (from top to bottom): depth images, manual segmentation and automatic segmentation result. The ID
refers to the image identification number. ID 17 is an outlier.

smaller than values inside the region of interest. Hence, we
define this edge weight function to be:

wE,k(x) = 1− e−α(∇rIk(x)), (17)

where∇rIk(x) is the gradient of the depth image Ik at location
x in the radial direction. The parameter α was experimentally
selected to be 0.05.

The optimal set of coefficients ĉMAP are obtained by
minimizing the cost functional via numerical optimization.

IX. EXPERIMENTAL RESULTS

The validation of our method was performed on a dataset
of 20 left hind tiger footprint depth images normalized using
the protocol described in Section III. The resulting images have
size 300 × 300 pixels. The captured dataset contains features
manually selected by several volunteers, and a growing number
of footprint segmentation contours selected by experts in the
wildlife monitoring field. A total of 8 points were selected
around each toe, 16 points around the pad, and the number of
eigen functions was chosen to be 4. We perform a leave one
out analysis due to small size of the dataset. Fig. 8 shows some
of the images from the dataset including manual and automatic
segmentation results. If we exclude the outliers, image with ID
12 has the worst ADE for the entire footprint, and ID 16 and
3 have the best.

We compare results for the pad using two approaches: (1)
by first aligning the test image using the centroid of the left
and right most toes of a reference image, and (2) without doing

any alignment. We essentially follow a sequential segmentation
approach. This additional alignment accommodates for any
scale issues we would have due to different sizes of footprints
and to get a better initial estimate. Fig. 9 shows examples of
how the additional alignment gave a better initialization and
refinement. We can see that in the nonaligned case, the shortest
path result obtained was not estimated correctly whereas for
the same case when aligned with the training reference, the
estimate was much better and hence the refinement was also
good.

In order to evaluate the accuracy of the approach, we
compute the average distance error (ADE) between the ground
truth points {βn}Nn=1 and our results γ:

ADE =
1

N

N∑
n=1

dist(βn, γ)), (18)

where dist(βn, γ) is the minimum distance between βn and
the curve. Table I summarizes our results for the aligned case.
We note that the overall average distance error for the toes,
pad and entire footprint is still within 8 pixels (considering
the outliers).

TABLE I. AVERAGE DISTANCE ERROR RESULTS

Image ID Toe 1 Toe 2 Toe 3 Toe 4 Pad Footprint
16 (Best) 2.26 2.56 1.93 1.79 3.63 2.641
12 (Worst) 4.09 4.51 3.31 3.27 15.66 7.75
3 (Second Best) 2.45 2.56 2.02 3.07 5.81 3.62
17 (Outlier) 4.43 3.96 6.66 35.26 7.87 11.01
Overall (Average) 3.62 3.95 4.67 6.89 7.20 5.59



Fig. 9. Results showing the alignment effects on the initialization and final
result. Blue circles are the results of the shortest path and red curve is the
result of the refinement. Column 1: Results for test images not aligned to the
reference image. Column 2: Results for test image aligned with the reference
image.

Fig. 10 shows the average distance error for the different
parts of the footprint. We observe that the ADE for the toes
is smaller than the ADE for the pad. This is expected as the
boundary edges of the lower portion of the pad are not clearly
distinguishable. Experts had to rely on color image information
in order to obtain their segmentation in these cases. Overall, the
ADE for the entire footprint is less than 6 pixels. We also show
the ADE for the pad without alignment. It clearly demonstrates
that the error is more than the aligned case and hence justifies
the need for alignment.

X. CONCLUSION AND FUTURE WORK

This paper introduces a methodology for the identification
of curves of interest in an image with applications to the
segmentation of animal footprints from depth images. The
approach models each curve as a stochastic process in a man-
ifold and searches for the curve with the maximum likelihood
to be generated by such a process. The search is done via a
shortest-path formulation of the problem in a graphical model,
and this shortest path estimate is then refined. The approach
is trained and tested using a dataset of images with feature
points manually selected by experts.

Improving efficiency: The method can be made more efficient
by using more target feature points and getting a much better
initialization for the refinement process. For the training, we
used only one pair of the toes for aligning the other images;
we could improve the training by considering all combination
of pairs of toes and choose the combination which gave
the least variance in the model. This could lead to better
performance. The optimization process could also be sped
up by applying a particle-filter search. Instead of randomly

Fig. 10. Box plots of average distance error for different regions of the
footprints. Errors are shown for the different toes, pad with alignment, pad
without alignment and whole footprint.

searching for potential candidates around the mean locations
for all the target points, we could fix a given point to be our
initial point. For this location we perform a random search
around the mean location. And for all potential candidates we
search the next target point. In this way we only find feasible
paths and do not perform an exhaustive search. We can also
find target feature points in the image using our eigen-based
approach instead of random selection.

Generalization: Several applications in medical imaging re-
quire the segmentation of biological tissue. Our approach for
footprints can be generalized as an object segmentation method
in the following way. We consider a sequential segmentation
approach, finding objects based on saliency of features.

In the future, we plan to expand the footprint dataset in
order to perform a more in-depth evaluation of our method
and incorporate this process with non-invasive footprint iden-
tification techniques [43]. The final goal would be to classify
animals using the footprint images.
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