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A B S T R A C T

Data on numbers and distribution of free-ranging giant panda are essential to the formulation of effective
conservation strategies. There is still no ideal method to identify individuals and sex this species. The traditional
bite-size method using bamboo fragments in their feces lacks accuracy. The modern DNA-based estimation is
expensive and demands fresh samples. The lack of identifiable individual features on panda pelage and no
apparent sexual dimorphism impede reliable estimation from camera trap images. Here, we propose an in-
novative and non-invasive technique to identify and sex this species using a footprint identification technique
(FIT). It is based on a pairwise comparison of trails (unbroken series of footprints) using discriminant analysis,
with a Ward's clustering method. We collected footprints from 30 captive animals to train our algorithm and
used another 11 animals for model validation. The accuracy for individual identification was> 90% for in-
dividuals with more than six footprints and 89% with fewer footprints per trail. The accuracy for sex dis-
crimination was about 84% using a single footprint and 91% using trails. This cost-effective method provides a
promising future for monitoring wild panda populations and understanding their dynamics and especially useful
for monitoring reintroduced animals after the detachment of GPS collars. The data collection protocol is
straightforward and accessible to citizen scientists and conservation professionals alike.

1. Introduction

The giant panda (Ailuropoda melanoleuca) is one of the world's most
iconic threatened species, with an estimated 1864 pandas surviving in
the wild (State Forestry Administration, 2015). Although protected
areas cover 54% of the suitable habitat (State Forestry Administration,
2015), this species still faces serious threats such as habitat loss and
fragmentation (Loucks et al., 2001; Li and Pimm, 2016). The giant
panda now lives in six mountain ranges and is isolated into 33 sub-
populations. Of these, 22 have fewer than 30 individuals, and 18 have
fewer than ten individuals and some of them are on the brink of ex-
tinction (State Forestry Administration, 2015). For their long-term
survival and management, understanding giant panda population dy-
namics is crucial. To date, there are no ideal methods for individual and
sex discrimination. Direct observation and counts are impossible be-
cause of low population densities, complex topography, and elusiveness
of the species (Zhan et al., 2006). Unlike tigers or leopards, the similar
appearance of individual pandas, with no identifiable features such as
stripes or spots, makes them difficult to differentiate from camera trap
images. Here, we suggest a practical field method to sex and identify

individual pandas.
Currently, there are two primary methods to identify individual

giant pandas: the bite-size technique and DNA-based approaches. The
bite-size technique was originally used to differentiate age groups of
pandas (Schaller, 1985) and then was extended to identify individuals
(Garshelis et al., 2008). Studies of giant pandas in the wild and captivity
have shown individual differences in “bite size” and “chew rates” of the
bamboo stems in their droppings (Schaller, 1985; Yin et al., 2005). The
bite size is usually derived from measuring 100 stem/leaf fragments in
droppings (Yin et al., 2005). This method has been used for the third
(1999–2003) and fourth (2011–2014) national survey of giant pandas
(State Forestry Administration, 2015), but it lacks scientific rigor (Wei
et al., 2002; Zhan et al., 2006). It is less reliable in denser population
areas or within mating clusters because many individuals may have
similar bite sizes. Moreover, some significant variation in bite sizes
within individuals could result in overestimating numbers (Zhan et al.,
2006). Finally, this method requires field staff to make very precise
measurements to apply the threshold of 2 mm (Yin et al., 2005). Human
and measurement tool errors are often unable to meet this level of
precision (Zhan et al., 2006).

https://doi.org/10.1016/j.biocon.2017.11.029
Received 8 September 2017; Received in revised form 15 November 2017; Accepted 24 November 2017

⁎ Corresponding author at: Nicholas School of the Environment, Box 90328, Duke University, Durham, NC 27708, USA.
E-mail address: zoesky@wildtrack.org (Z. Jewell).

Biological Conservation 218 (2018) 83–90

0006-3207/ © 2017 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00063207
https://www.elsevier.com/locate/biocon
https://doi.org/10.1016/j.biocon.2017.11.029
https://doi.org/10.1016/j.biocon.2017.11.029
mailto:zoesky@wildtrack.org
https://doi.org/10.1016/j.biocon.2017.11.029
http://crossmark.crossref.org/dialog/?doi=10.1016/j.biocon.2017.11.029&domain=pdf


The alternative is using microsatellite analysis with fecal DNA (Zhan
et al., 2006). This non-invasive DNA sampling was also used in the
fourth national giant panda survey (State Forestry Administration,
2015). Believed to be more accurate than the traditional bite-size es-
timate (Wei et al., 2015), its accuracy requires the sample to be very
fresh to exclude potential degradation and contamination of DNA. The
extensive survey effort required and challenges in finding sufficient
samples have prevented applying this method successfully in large-scale
studies. The cost of processing samples in the laboratory has impeded
the use of DNA individual identification for most conservation practi-
tioners.

There is no apparent sexual dimorphism in the giant panda. Because
the external sexual organs are small and cryptic, it is difficult to identify
the sex of giant pandas in the field, or even in captivity, without a DNA
test. Adult males are 10–20% larger than adult females (Smith et al.,
2010). There is much variation, however, and it is particularly difficult
to identify the sex of a solitary, free-ranging animal, outside the
breeding season. This problem is exacerbated when it comes to iden-
tifying the sex of sub-adults (Yang et al., 1999).

Reintroduction has been a crucial part of panda conservation,
especially to revive the small and isolated local populations. GPS collars
are only used for these reintroduced pandas and are set to drop off after
two years. Reintroduction needs to be evaluated in the long term and
requires novel non-invasive methods to monitor these individuals.

These challenges have motivated the development of a robust and
cost-effective technique to balance the accuracy required of a popula-
tion estimate with the need for a low-cost field tool. The Footprint
Identification Technique (FIT) has become a promising and cost-effec-
tive tool in wildlife conservation in recent years (Pimm et al., 2015).
This non-invasive technique was first developed for black rhinos
(Jewell et al., 2001). More recently it has been successfully adapted and
applied for cheetah (Jewell et al., 2016), white rhinos (Alibhai et al.,
2008), Amur tiger (Gu et al., 2014), mountain lions (Alibhai et al.,
2017; Jewell et al., 2014) and other endangered species.

Footprints have been used as signs of giant panda presence for many
years (Fan et al., 2011; Wang et al., 2014; Li et al., 2015). Their foot-
prints are characteristic of the species, and if the substrate permits,
easily found.

We report the development of the giant panda FIT for individual and
sex identification, a potentially powerful tool to assist with the man-
agement and conservation of this endangered species. FIT can play an
important role in monitoring the demographics of giant panda popu-
lations. China now has around 375 captive giant pandas and an active
re-introduction programme is underway (State Forestry Administration,
2015). Since FIT requires the initial establishment of a training data-
base with known individuals to extract the necessary algorithms, the
captive-bred population proved to be an ideal resource. The develop-
ment of this technique for the giant panda could help establish an in-
dividual database of footprints for the free-ranging populations.

2. Methods

2.1. Study population

We collected footprint images from 41 captive giant pandas in the
China Conservation and Research Centre for the Giant Panda (CCRCGP)
in Sichuan, China. It has three major captive bases; Ya'an, Du Jiang Yan,
and Wolong. The Wolong base is located in the heart of Wolong
National Nature Reserve, which is one of 67 reserves designated by
China's government to protect wild giant pandas (State Forestry
Administration, 2015). Several enclosures are built in the forest, each
with an average area of 0.33 km2. This natural habitat provides con-
ditions for rehabilitating animals which are to be reintroduced to the
wild.

2.2. Study period

We collected images from captive animals from March 2014 to April
2016, mostly on a prepared sand substrate since snowfall was in-
frequent at the lower altitudes where captive pandas are held. Fresh
sand was used for each animal to avoid any possible disturbance of
behaviors from olfactory cues. At the same time, we collected footprints
on snow from captive animals at Wolong when enough snow had ac-
cumulated in the higher-altitude enclosures.

2.3. Foot anatomy and data collection

In addition to the five digits, the giant panda has an unusual feature
on the front feet – a ‘sixth finger’ or ‘sesamoid pad’. This structure acts
as an opposable digit and is an adapted and enlarged radial sesamoid
bone from the wrist. This exaptation enables giant pandas to grab
bamboos more efficiently and to facilitate feeding (Endo et al., 1999).
Thus, a clear front footprint usually shows six distinct digit pads along
with the metacarpal and carpal pads. The sesamoid bone imprints are
unique to giant panda prints. For our purposes, they have the advantage
of adding complexity to the footprint, thus enabling the extraction of a
more effective FIT algorithm from the morphometrics (Fig. 1).

Initial trials to investigate the clarity of the prints left by each of the
four feet also indicated that front foot impressions were more dis-
tinctive, detailed, and clearly outlined. This was likely due to a com-
bination of greater weight at the front of the animal and less fur on the
front feet. We arbitrarily chose the left front foot for the FIT model
development. In common with bear species, pandas tend to over-step or
side-step. That is, instead of registering the hind foot impression on that
made by the front foot, the hind foot usually falls in front of the front
foot print or to one side, leaving a clear front foot impression.

We define a trail to be an unbroken series of footprints from one
animal. We took images of each left front footprint from directly above
with a carpenter's scale in the trail according to the protocol described
in Jewell et al. (2016). The form of each footprint may vary with the
gait of the animal, substrate type, moisture levels, slope of the ground
and weather conditions. To account for this variation within the foot-
print metrics of each individual, we collected multiple footprint images
from each panda.

2.4. Extracting a geometric profile

In total, we collected 521 usable footprints along 76 trails from 41
individuals (see Supplementary Table 1 for individual information).

We imported each digital footprint image into a customized FIT
addin in JMP software from SAS, resized and rotated for standardiza-
tion (Jewell et al., 2016). Scale points 1 and 2 were placed on the ruler
at an interval of 10 cm. Landmark points were then placed manually at
anatomical positions on the footprint, following software prompts. In
other species, the edges of the pads are more clearly defined e.g., the
cheetah (Jewell et al., 2016). In the giant panda, the edges of the pads
are less clearly defined due to different substrates on where footprints
can be found in the field, so we used the centroids for landmark points 1
to 6 on the toe pads and sesamoid pad, and the distal end of pad for
landmark point 7 (Fig. 2). Using these landmark points, JMP auto-
matically computed a further 15 derived points and then 124 metrics
consisting of lengths, angles and areas (see Supplementary Table 2 for
details). The collection of these metrics allows all measurements that
one anticipates might prove useful in discriminating between foot-
prints.

3. Data analysis

3.1. Individual identification

The FIT customized model for classifying trails employs pairwise
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Fig. 1. Foot anatomy and footprints of the giant panda. Left
front foot on the left and left hind foot on the right with
their prints below. A) digital pad; B) metacarpal pad; C)
sesamoid pad; D) carpal pad. The corresponding pads, a, b,
c and d are shown in the footprint image.

Fig. 2. Landmark points and computed derived measure-
ments. On the left, the 7 landmarks that are input manu-
ally, 1–5 on centroids of the digital pads, 6 on centroid of
the Sesamoid pad and 7 on the distal end of the carpal pad
indentation. Points 1 and 5 were used as rotation points
along a horizontal axis. On the right, the 7 landmarks with
the derived measurements and other variables that FIT
generates automatically.
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comparison of trails using discriminant analysis (Jewell et al., 2016).
During this process, each pair combination of trails is held back as the
test set with the rest of the trails utilized as the training set model
building. The top explanatory measurements are selected using forward
stepwise regression according to their F-ratio. Then the first two ca-
nonical variates are constructed to map the trails in this two-dimen-
sional space. The centroid values (multivariate least-square means) and
95% confidence interval ellipses are plotted for each trail. In the FIT
model, the presence/absence of overlap of the ellipses is used as a
classifier. If the ellipses overlap, then these two trails are likely to be-
long to the same individual (Fig. 3).

The distance between the centroids is relative, depending on the
matrix of within-group variations and the relative-position vector of the
centroids. Thus, any changes of a testing set (adding or removing in-
dividuals) would alter the positions of the centroid values as well the
ellipses. To solve this problem, we applied two modifications proposed
by Jewell et al. (2001). First, we applied the centroid plot technique on
a pairwise basis, comparing two trails at a time. Second, we constructed
a “Reference Centroid Value (RCV)” using the other known individuals
in the library as a reference point in the canonical space. The RCV
functioned to stabilize the location of any test groups with respect to
each other (Alibhai et al., 2008; Jewell et al., 2016; Alibhai et al.,
2017).

When testing the accuracy of a species FIT algorithm it is necessary
to optimize the values of three features within the FIT model construct:
the number of variables in the model, the size of the confidence in-
tervals around the ellipse, and the threshold value of the distances
between the means. The supplementary materials discuss the process of
identifying the optimal combination of these three parameters.

To test the robustness of our model, we ran sequential holdback
trials with random portioning of the dataset into test and training sets.
By varying the number of individuals in the training set, we tested the
accuracy of the model in predicting the number of individuals in the
test set. We used this process to get an overview of the most effective
combination of the three parameters (see supplementary materials).

Then we ran a more detailed sequential holdback trial. We started with
a test/training set ratio of 3/27 randomly selected individuals with the
optimal combination of the three parameters and increased the test size
at intervals of 3. For each test/training set ratio, we iterated the process
ten times and plotted the predicted means for each set against the ac-
tual test set size.

The final output in FIT is in the form of a cluster dendrogram giving
a predicted number of individuals (Jewell et al., 2016; Alibhai et al.,
2017). It identifies the Ward distance between each pair of trails, which
is the distance between two clusters in the dendrogram. This distance is
computed from the ANOVA sum of squares between the two clusters
summed over all the variables. It is the basis for identifying whether
each pair of trails are from the same individual or two different in-
dividuals. Individuals predicted to be the same by the algorithm were
clustered together and given the same color-code.

We analyzed the data in three stages. First, of the 41 individuals, 30
had trail(s) with a minimum of 6 footprints per trail. Footprint images
for these individuals were from a sand substrate and we used these to
extract the algorithm in FIT for individual identification. Table 1
summarises the sex ratio, age, numbers of footprints and trails per-
taining to the 30 individuals. Then we conducted the within model
validation.

We divided our independent test dataset into two sets. The first test
set had two individuals from the enclosure with natural habitat. The
second test set had nine individuals with fewer than six footprints and
was used to test a limited sample size.

3.1.1. Sex discrimination and age-class distribution
We analyzed the data using discriminant analysis to generate a

predictive model to discriminate sex in the giant panda. We performed
linear discriminant analysis (LDA) sequentially using an increasing set
of measurements selected stepwise to identify the asymptote for the
accuracy. The stepwise measurement selection was used to generate a
parsimonious set of measurements, based on F-ratios, which provides
the most power to discriminate sex (Gu et al., 2014). It also excludes
highly correlated variables that may bias the estimate. Five-fold cross-
validation was used to evaluate the model. Since there was a possible
interaction between sex and age in the giant panda with regard to foot
morphology, we divided the individuals into five age classes (A:
0–2.9 yrs old, B: 3–5.9 yrs old, C: 6–8.9 yrs old, D: 9–11.9 yrs old and
E:> 12 yrs old, see Table 3 in Supplementary for details) and subjected
sex/age classes to discriminant analysis.

4. Results

4.1. Individual identification

4.1.1. Systematic holdback trial
The optimal combination of three parameters for the model is 12

Fig. 3. Two way canonical plots showing positions of
centroid values and 95% confidence interval ellipses
for trail data from same individual (A) and two dif-
ferent individuals (B) in FIT analysis. The analysis is
performed in the presence of a constant, the Reference
Centroid Value (RCV). Each single point represents a
footprint. In A, the blue and red ellipses for trail data
are from the same individual Junzhu, a female, and in
B, two different individuals (blue for the male Wu Jun
and red for Jun Zhu). (For interpretation of the re-
ferences to color in this figure legend, the reader is
referred to the web version of this article.)

Table 1
Details of 30 individuals each with a minimum of six footprint images per trail used in the
training set.

# of
individuals

Mean
age
(range)

# of
footprint
images

Mean # of
footprints
(range)

# of
trails

Mean trails/
individual
(range)

Females 16 9.6
(2–15)

273 17.1 (8–31) 38 2.4 (1–4)

Males 14 7.5
(2–14)

204 14.6 (6–33) 29 1.1 (1–4)

Total 30 8.6
(2–15)

477 15.9 (6–33) 67 2.2 (1–4)
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variables, 95% confidence interval and 1.5 as the threshold value. The
FIT provided a more accurate estimate when the training set was> 12
individuals (Fig. 4). With larger training set sizes, the predicted test set
size matched the actual test set size very accurately and the range
around the mean remained small. At a ratio of 15 training/15 test and
12 training/18 test, the range around the mean increased and beyond
that, the level of accuracy of prediction declined.

4.1.2. Model validation
Using the above algorithm for the giant panda, we tested its efficacy

in three stages. First, we ran the FIT analysis for the data set of 30
individuals with 477 footprints and 67 trails. Fig. 5A shows that the FIT
model predicted 28 individuals (93.3% accuracy) with seven of the 67
trails misclassified (89.6% accuracy). The distance threshold de-
termines the numbers of clusters and hence the predicted number of
animals. Varying the threshold, the relative estimated likelihood of
accuracy for 27 individuals was reduced to 78% (Fig. 5B). The dis-
tribution of “chance” is calculated as the relative probability of pre-
dicting a specific number of individuals compared to the auto output
number. However, the likelihood for 29 or 30 individuals remained
high at 91% (Fig. 5C) and dropping off thereafter to 72% for 31 in-
dividuals. In other words, the FIT predicted 28–30 individuals.

Second, we iterated the analysis with a total of 32 individuals in-
cluding two trails collected from semi-enclosures in a snow substrate
from two known individuals. Fig. 6 shows that the model predicted 29
individuals (90.6% accuracy) with the two added trails from Yeye and
Zhangka being identified correctly as separate individuals.

Third, we ran the accuracy assessment with the additional trails
from the nine individuals that had fewer footprints than the requisite
minimum number (6) for the FIT model. We analyzed these nine trails
using the same algorithm in the FIT model. The model predicted eight
individuals giving a surprisingly high accuracy (88.9%) (detail den-
drogram in the supplementary).

4.2. Sex discrimination

Since age of individuals could affect the analysis, we compared the
mean ages of females (n = 20, x = 10.18, SE = 1.03) and males
(n = 20, x = 7.5, SE = 1.03) (the age for one female was not known).
There was no significant difference (F Ratio = 3.35, p > 0.05). Fig. 7
shows the number of variables versus accuracy of sex prediction for the
dataset using linear discriminant analysis. The asymptote was reached
at an accuracy of about 84% using single footprints with approximately
30 measurements. The accuracy level even with as few as five variables
was above 75%. To assess the accuracy using trails, we used a simple
majority of misclassified footprints in the trails as a classifier. Of the 79
trails, seven were misclassified and one was an even split, giving an
accuracy of 91.0%.

4.2.1. Sex and age-class interaction
We subjected the data to LDA using different sets of variables se-

lected stepwise and it became clear that while the other age classes for
the sexes showed a clear difference in a two-way canonical plot, the
youngest age classes for males and females appeared to be very similar.
This suggests that female and male pandas under the age of three years
appear to have very similar foot shape and size. Fig. 8 shows a two-way
plot using the first two canonicals generated by LDA with 20 variables
selected stepwise (age classes FA and MA were excluded for this ana-
lysis). There appeared to be a marked difference in the distribution
pattern for the sexes.

5. Discussion

The literature now recognizes the importance of developing robust,
reliable and cost-effective non-invasive techniques for censusing and
monitoring populations of endangered species (Jewell et al., 2016;
Pimm et al., 2015; Alibhai et al., 2017). Invasive methods requiring
capture, handling and tagging of animals can have negative effects
ranging from subtle changes such as alteration of sex ratios (Moorhouse
and MacDonald, 2005) to dramatic reductions in fertility (Alibhai et al.,
2001).

The Footprint Identification Technique (FIT) is non-invasive. We
show that metrics derived from footprint images of the giant panda
successfully identify individuals, determine sex and, to some extent,
classify them according to age. In particular, the sequential holdback
trial gave predictions for estimated numbers of individuals in the
samples very similar to the actual numbers. This analysis with 30 in-
dividuals (Fig. 6) indicated that even with a training set of 12 in-
dividuals, the predicted mean of the ten iterated values for the 18 in-
dividuals in the test set was very close to the actual test set size.
However, the high variation around the mean suggests that a training
set of around 12 individuals for building the model would lead to in-
consistencies in prediction accuracies. For the giant panda, we would
suggest a training set of 20 individuals with an even sex ratio as a
minimum number for individual identification using FIT.

Free-ranging giant panda sub-populations exist at relatively low
population densities where FIT can provide the opportunity to monitor
individuals or simply provide regular population estimates. This is ne-
cessary because the technique requires that the variation in shape and
size of footprints due to extraneous factors such as gait, weight dis-
tribution, substrate type etc. be taken into account in the development
of the model. Previously we have shown that for the FIT model, six to
eight footprints per trail is the optimum number (Alibhai et al., 2008).
When we tested the efficacy of the FIT model for the giant panda on
trails with fewer than six footprints, the predicted accuracy (eight in-
dividuals) was still very close to the actual number (nine). The two
trails from two different known individuals which were incorrectly
identified as belonging to the same individual had only two and three
footprints per trail. This suggests that with relatively smaller sub-po-
pulations of about ten individuals or where only a part of a population

Fig. 4. The result of a comprehensive holdback trial for 30 pandas. If the test set size
equals 3, then the training set size is 27 to build the model. The process was iterated 10
times for each test set size. The solid black line represents the 1:1 line of the true values
(black squares). The red dots are the ten predicted values at each test set size. The red line
represents the means of predicted test set size. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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is being sampled, even three to four footprints per trail would give
accurate identification of individuals.

We examined the possibility of classification interaction between
age and sex. Although there is very little sexual dimorphism in the giant
panda, males and females show different growth patterns in their
footprint morphometrics. In particular, the disparity between the sexes
shown by age class changes for the measurement ‘Area 8’ was quite
marked (see supplementary materials). Using multiple variables, once
again, a two-way canonical plot, generated using discriminant analysis,
showed that footprints for the sexes differed. However, our sample sizes
for the age class groups were too small to draw any definitive conclu-
sions. Since there was no significant difference between the mean ages
of the sexes, linear discriminant analysis using a varying set of mea-
surements selected stepwise, showed that even with as few as five
variables, the prediction accuracy was quite high. A five-fold trial
(training/test % ratio of 80/20) with five variables gave a mean

accuracy for the five trials of 82%. For a repeat trial with 35 variables,
the mean accuracy was 86%.

The models in this paper are already scripted into an add-in in JMP
software. The software can be made available free-of-charge to con-
servation organizations after participation in a training workshop and
by application to JMP. Basic level digital cameras or phones can be used
to take photos following the standard procedure. Where routine surveys
are taking place, there should be little or no extra cost to collect foot-
prints. Thus, FIT provides a cost-effective way to identify and sex in-
dividuals, monitor their population dynamics, and to carry out research
and formulate effective conservation strategies.

6. Field application

Good quality footprints are crucial. The minimum requirement for
the footprint is that one can recognize its key features — five toe pads,

Fig. 5. Cluster dendrograms for 67 trails from 30 individuals showing classification of trails and predicted values. This is a simplified figure from the FIT output (see supplementary
materials for original output figure). The FIT model predicted 28 individuals (A), with a 78.3% likelihood of 27 individuals (B) and a 90.7% likelihood of 30 individuals (C). The same
shade stands for the same individual identified by FIT. The smaller fonts in the first column stand for the trail ID and the bigger fonts on the second column denote different known
individuals. The diamond shows the threshold value. Any trails to the right of it are identified as the same individual. The distribution of “chance” is calculated as the relative probability
of predicting a specific number of individuals compared to the auto output number (28 in this case). See Table 1 in Supplementary for the key to animal names.
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Sesamoid pad and carpal pad. Although our method is robust for dif-
ferent substrates, it is unable to deal with distorted footprints that may
happen when the animals climb up and down the steep slopes. To im-
prove the usability of images, we recommend focusing footprint survey
efforts on ridges and valleys where there is flatter terrain likely to hold
complete and clear footprints. These areas are also ecologically im-
portant for pandas and frequently used as trails, water sources, and
territory marking sites (Schaller, 1985; Liu et al., 2005; Hull et al.,
2014). In addition, most of the ongoing field survey or monitoring
programs use camera traps in this flatter terrain. Thus, using valleys
and ridges takes into account both the feasibility of field surveys and
usability of footprint images. It is also relatively difficult to find panda

prints in areas with deep leaf litter and moss cover. We recommend
carrying out footprint surveys when there is snow.

When a footprint is spotted in the field, the staff should follow the
direction of the footprint and search for the whole trail. Ideally, 3–6 left
front footprints should be collected from a trail. Images can be taken
using a range of digital cameras and smartphones, depending on
availability. A carpenter's scale or two rulers should be laid perpendi-
cular along the bottom and left axes of the footprint, with reference to
the direction of travel. A paper ID slip is laid adjacent to the scale and
included it in each image that records GPS location, date of collection
and ID of the footprint. Great care should be taken to capture images
from directly above the footprint and perpendicular to the plane of the
footprint to avoid parallax error. Then the photos can be imported to
the FIT software for analysis.

Like any conservation monitoring technique, FIT has advantages
and limitations. The collection of fresh and clear footprints requires a
commitment to fieldwork, especially in snowy conditions. Locating

Fig. 6. Cluster dendrogram for 32 known individuals including trails collected in snow
substrate from two separate individuals YY (Yeye) and ZK (Zhangka) from a semi-en-
closure. A, B, C etc. denote different trails from the same individuals. The model predicted
29 individuals with the two added individuals, YY and ZK (highlighted with red boxes),
identified correctly as separate individuals. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Numbers of variables (measurements) and percentage accuracy of sex classifica-
tion based on individual footprint metrics. The variables were selected stepwise based on
F-ratios in linear discriminant analysis.

Fig. 8. Two-way canonical plot generated using discriminant analysis with 20 footprint
measurements selected stepwise for different age classes of female and male pandas. The
red dots were from female footprints and blue dots were from males. Age class A
(0–2.9 years) for both sexes was excluded from the analysis. F for females, M for males. B,
C, D, E for age classes in the main text. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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footprints efficiently comes with experience, and the help of local
trackers is often invaluable. Field staff needs training in how to identify
panda footprints and the correct foot for FIT. We encourage researchers
to investigate innovative ways to combine this technique with tradi-
tional methods such as camera trapping and facilitate the deployment
of FIT for panda monitoring year-round,

China is committed to the reintroduction of captive-born giant
pandas to the wild to diversify the genetic pool and keep the population
stable. Since 2010, seven pandas have been reintroduced, and five have
survived. The GPS collars on these animals drop off automatically after
two years, so it is difficult to track these animals afterwards. FIT could
serve as a long-term and low-cost tool to monitor these individuals after
the first two years. It could provide insights into the range changes,
activity levels, interaction with other individuals and many other cru-
cial aspects regarding the success of reintroduction in the long term.

This cost-effective and non-invasive technique also empowers local
conservation practitioners, and particularly those with tracking skills or
other traditional ecological knowledge, to monitor Pandas and evaluate
conservation projects on their own. Moreover, this technique can be
used for citizen science. As tourism increases to southwest China,
visitors can be engaged to collect footprint images as per FIT protocol
and contribute to giant panda conservation.
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