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ABSTRACT

Apex predator populations are in decline around the world. Many exist at low density and are elusive, making the
acquisition of reliable data on their numbers and distribution a considerable challenge. The Amur tiger (Panthera
tigris altaica) is the largest of the five extant sub-species of tiger. The single most significant, contiguous popu-
lation, an estimated 550 animals, exists in the Russian Far East, with smaller populations on the far eastern Sino-
Russian border. For the last few decades, active efforts on the part of Chinese authorities have encouraged the
recolonization of these populations back to their former ranges in Northeast China. Reliable data on Amur tiger
numbers and distribution are required to assess population recovery at the landscape scale. Footprints, ubiqui-
tous in the snow over range areas, could inform on these baseline data. This paper describes a statistically robust,
cost-effective and non-invasive footprint identification technique (FIT) to identify individual tigers from foot-
prints in snow. It is based on a rigorous data collection and data-processing protocol, combined with a cross-
validated discriminant analysis method. A Ward’s clustering technique provides a visual output of individual
classification. The analytical tools are packaged in a user-friendly analytical interface. Between December 2011
and December 2012, we collected a series of 605 footprint images from 44 captive individual Amur tigers for a
reference database from which to derive a classification algorithm. The 23 females and 21 males ranged in age
from 3 to 13 years (female mean age 7.95 +/— 0.18; male mean age 8.08 +/— 0.19). 128 measurements (areas,
lengths and angles) were taken from each print and analyzed with the FIT add-in to JMP software. The derived
classification algorithm was then applied to 21 footprint trails collected from an unknown number of free-
ranging Amur tigers during 2012 and 2015/2016. The algorithm predicted 7 Amur tigers at the site surveyed
in 2012, and 4 tigers surveyed at two sites in 2015/16. We demonstrate that the footprint identification tech-
nique translates traditional tracking methodologies into a statistically robust and objective analytical tool that
can be deployed by both scientists and local communities to monitor the recovery of big cat populations.

1. Introduction

ranging from loss of plant biodiversity, biomass and a loss of produc-
tivity, that in turn can change disease dynamics, carbon sequestration

Apex predators, such as the big cats, play vital regulatory roles in and increase wildfire risk (O’Bryan et al., 2018). Big cat populations are
maintaining healthy ecosystems by exerting top-down pressure on prey declining around the world due to many factors such as the loss of their
communities and their disappearance can cause negative impacts natural habitat, reduction in prey base, human-wildlife conflict, illegal
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killing, pollution and climate change (Ordiz et al., 2021).

The endangered Amur tiger (Panthera tigris altaica) is the largest
subspecies of tiger and is currently distributed primarily in Southeast
Russia with small populations in Northeast China on the Sino-Russian
and North Korean borders (IUCN, 2021; Qi et al., 2020). Until the
20th century, the species ranged widely across the Russian Far East, the
Korean Peninsula and northern China. However, by the 1960s, a com-
bination of habitat degradation and fragmentation, combined with
poaching, had reduced the population to an estimated 400 animals in
Russia and small contiguous areas of Northeast China (Kerley et al.,
2015). By 2000, only 12-16 individuals remained along the Sino-
Russian border (Ma and Zhang, 2009).

In the last few decades, Chinese authorities have actively encouraged
the Amur tiger back into its historic range in China, beginning with areas
on the far eastern side of the Sino-Russian border. In 2016, China created
the 14,600 km? Northeast Tiger Leopard National Park (NTLNP) in the
eastern Laoyeling forests bordering Russia, currently the world’s largest
protected area for tigers (Qi et al., 2021). This area, and the adjacent
Changbaishan Mountains are the primary focus of Amur tiger conser-
vation by the Chinese authorities (McLaughlin, 2016; Northeast Tiger
Leopard National Park of China, 2016). Together with the imple-
mentation of prey-stocking, this habitat protection has resulted in the
population starting to disperse back to its former range in China (Wang
et al., 2015; Wang et al., 2018). It has been suggested that China might
restore a sustainable meta-population of 310 tigers including 119 resi-
dent breeding females into four current major forested landscapes (Qi
et al., 2021) where tiger habitat is optimal (Jiang et al., 2014). Regular
and effective monitoring is key to the successful recolonization of these
areas, since tigers require relatively large populations to persist, are
quite susceptible to modest increases in mortality, and are less likely to
recover quickly after population declines (Chapron et al., 2008; Rozh-
nov et al., 2019). Monitoring the numbers and distribution of the Amur
tiger presents further challenges, because they exist at very low popu-
lation densities (Miquelle et al., 2010). The average home range for a
female tiger was reported as 390 km?, and for a male up to 2000 km?
(MacKenzie et al., 2005).

Several methods have been used to attempt to census and monitor
Amur tiger populations. To date, camera-traps (Matyukhina et al., 2016;
Wang et al., 2018), microsatellite analysis of DNA extracted from scat
(Douetal., 2016; Ning et al., 2019) and scent-matching dogs (Kerley and
Salkina, 2007), have provided most of the available population esti-
mates including the more recent Spatially Explicit Capture-Recapture
(SECR) models that permit inclusion of spatial data and avoid the
assumption that the population being sample is ‘closed’. SECR models
are most commonly used for estimating population density in big cats
that can be identified from gross morphology e.g. coat pattern (Borchers
and Efford, 2008; Royle and Young, 2008; Wang et al., 2018).

Mammal species often leave footprints that are sufficiently distinc-
tive to permit the identification of the sex and individual(s) who made
them. There have been many reported attempts to use footprints ranging
from reporting footprints as a simple index of abundance (Karanth et al.,
2010; Karanth et al., 2011) for occupancy analysis, to taking simple
measurements directly from footprints in the field for brown bear Ursus
arctos (Edwards and Green, 1959; Klein, 1959) and tiger Panthera tigris
(Panwar, 1979), to visual pattern recognition Fisher, Martes pennanti
(Herzog et al., 2007) and unsupervised neural nets in Snow leopard,
Panthera uncia, (Riordan, 1998). More rigorous morphometric ap-
proaches have been reported for European pine marten, Martes martes
(Zalewski, 1999) and tiger, (Panwar, 1979; Riordan, 1998; Sharma
et al., 2005). One approach, the Footprint Identification Technique (FIT)
has been described for several different species and is based on rigorous
data collection protocols, large training data sets and a robust cross-
validated discriminant analysis, integrated into a user-friendly analyt-
ical software. It has been reported for Black rhinoceros, Diceros bicornis,
(Jewell et al., 2001); White rhinoceros, Ceratotherium simum (Alibhai
et al., 2008) Puma concolor (Alibhai et al., 2017); cheetah, Acinonyx
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jubatus (Jewell et al., 2016); Lowland tapir, Tapirus terrestris (Moreira
et al., 2018) and Giant panda, Ailuropoda melanoleuca (Li et al., 2018).
Examples of three different field applications of FIT were reported by for
a closed population of black rhinoceros, based on the requirement for
data granularity, frequency of monitoring and availability of local re-
sources using this same technique (Jewell et al., 2020).

The traditional method of identifying individual Amur tigers from
footprints in the snow, practiced mainly in the Russian Far East, is based
on measurements of the width of the front paw palmar pad that vary
with age and sex. It is considered quick, simple, and inexpensive (Hay-
ward et al., 2002). However, challenges remain in discriminating the
similarly sized sub-adult males and mature females (Yudakov et al.,
2012). The identification of Amur tiger sex from footprints in snow in
Northeast China was reported by Gu et al. (2014) using a statistically
robust morphometric approach.

FIT is an example of a class of emerging, statistically reliable, non-
invasive, and cost-effective techniques, driven by growing concern
over invasive approaches (Alibhai et al., 2001; Long et al., 2012; Pimm
et al.,, 2015; Zemanova, 2020), and their risk of invalidating data
collected (Jewell, 2013). Footprints are ubiquitous across many big cat
habitats, easier to locate than the animals themselves, and, since trails
remain sometimes for days, can offer a record of the exact movement
patterns of animals as well as their presence/absence and, using FIT, sex
and individual identity.

We report here on the development of a FIT algorithm for individual
identification of Amur tigers in snow substrates, we apply this identifi-
cation algorithm to an arbitrary sample set of footprints captured from
free-ranging Amur tigers in Northeast China, and we introduce FIT for
the Amur tiger as a potentially wider application for big cats in both
snow and other substrates.

2. Materials and methods
2.1. Definition of terms

Footprint: An impression made by a foot on a substrate

Trail: An unbroken series of footprints made by a single animal.

Sub-trail: A trail obtained by sub-dividing one long natural trail, into
shorter segments.

2.2. The study area

The study areas were chosen based on their ability to provide
anecdotal evidence of tiger presence every year (Ning et al., 2019; Zhu
et al., 2019) and their potential to support tigers (Li et al., 2016; Zhang
etal., 2013). We collected footprints from both captive and free-ranging
Amur tigers in three areas of Northeast China; Zhangguangcailing, the
Wanda Mountains and the Lesser Khingan Mountains. In these dispersal
areas, footprints are the main source of information about Amur tiger
presence, especially in winter (Fig. 1).

Footprints from captive Amur tigers were collected from the Heng-
daohezi Amur Tiger Breeding Center in the Heilongjiang Province of
North-East China, where records are kept on date of birth and parentage
for >300 Amur tigers.

2.3. Materials for collection and analysis

Our objective was to develop a classification algorithm in the FIT
that would allow identification of individual Amur tiger from their
footprints in snow. The classification algorithm was derived from foot-
prints collected from captive Amur tiger of known identity, validated on
this dataset, and then applied to footprints collected from free-ranging
Amur tiger. The technique is based on the morphometric analysis of
sequences of footprints along a trail. We collected images of Amur tiger
footprints using a photo protocol described in detail by Gu et al., 2014,
with a basic Sony cyber-shot compact digital camera. We used a 20 cm
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Fig. 1. Areas A (Wanda Mountains), B (Lesser Khingan), & C (Zhangguangcailing) of Amur tiger expansion into China, outside the Northeast Tiger Leopard National
Park (NTLNP) where free-ranging Amur tiger footprint trails were detected and photographed in 2012 and 2015/16.

carpenters’ metric folding ruler to provide scale. We imaged only those
footprints demonstrating clear outlines of the 4 toes and metapodial pad.
Fig. 2 provides examples of the different qualities of the footprints.
Supplementary Fig. 1 demonstrates the consistency of footprint quality
between captive and free-ranging tigers.

2.4. Developing a classification algorithm using footprints from captive
Amur tigers

We developed a classification algorithm by extracting measurements
from a set of footprints (the training set) collected from 44 captive in-
dividuals in a breeding facility, whose records of identity, sex and date of
birth were available. Their ages ranged from 3 to 13 years old (both
females and males) (Table 1).

Due to an atypical shortage of snow during the sampling period, we
augmented the enclosure spaces with natural, sifted snow, laid to 2-3 cm
depth, to imitate natural conditions. We encouraged animals, using food
rewards, to walk over the surface, then moved them on to a safe
enclosure before collecting footprints. Each footprint was photographed
to the FIT protocol (Alibhai et al., 2008) placing a metric scale ruler to
the left and bottom of the footprint in relation to the direction of travel
(See Figs. 3, 2.6 below). Details of the date, name of photographer,
location and animal ID (if known) were recorded on a plastic wipe-off
strip below the ruler. We collected only left hind footprint images for
analysis in this study. Hind feet were used in preference to front feet
because they are more accessible in situ in cases where footprint regis-
tration (the placing of the hind foot on top of the front footprint) occurs.
The FIT requires all prints to be from the same foot, and the left hind
footprint was chosen arbitrarily.

Snow substrates typically demonstrated high reflectivity, resulting in
low-contrast images. We obtained optimal images by photographing
early and late in the day and provided artificial lighting from a flashlight
when conditions were overcast and visibility very poor.

2.5. Collection of footprints from free-ranging Amur tigers

In the winters of 2012 and 2015/6 we located and collected multiple
high-quality footprints from free-ranging Amur tigers. Images were
collected opportunistically when teams were notified of trails by local
villagers and patrollers. Despite challenging field conditions, it was not
difficult to find clear footprints. The field team was accompanied by
local trackers who used their experience to locate footprints on level
terrain such as frozen rivers, roads, ridges and farmland. Supplementary
fig. 2 demonstrates examples of free-ranging trails in snow. However,
when footprints were found in very deep snow, excess snow around the
footprint was manually removed to keep the ruler and the outline of the
footprint on the same plane. Fresh snowfall, wind, ice overflow, and
melt-out caused some footprints to degrade. Fresh snowfall was the most
common cause (82%) of footprint degradation in January and February,
while footprints created later in the season tended to degrade faster
(lasting on average 2.1 days) because of warm weather and wind
(Hayward et al., 2002).

While footprints collected from captive tigers were labelled with
their individual name, sex and age, we recorded footprints from free-
ranging tigers (of unknown identity) as trail identities, in the
following manner: the first trail imaged each day was labelled trail 1,
and each sequential footprint recorded as 1a, 1b, 1c, etc. The second trail
was trail 2, and footprints recorded as 2a, 2b, etc. If a trail was obscured
or broken at any point, the next set of images was allocated the next trail
number to avoid an assumption of identity. Geo-locations were recorded
for each trail, along with habitat information.

2.6. Algorithm development for classification of individual Amur tigers
from footprint images

The identification algorithm was derived from footprints collected
from captive Amur tiger of known identity. Between December 2011
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Fig. 2. Images A-C exhibited unclear outlines and were discarded, while images D—F were used for analysis. We maintained the same quality control over prints

from both captive and free-ranging tigers.

and December 2012, we collected a series of 605 footprints from 44
captive tigers; the age range for the 23 females and 21 males was 3-13
years (female mean age 7.95 +/— 0.18; male mean age 8.08 +/— 0.19).
The process of developing a classification algorithm has been described
by Alibhai et al., 2017. Below we summarize the process as it applies to
monitoring the Amur tiger in snow.

We imported footprint images into the FIT software feature extrac-
tion window in JMP v.16 software (Fig. 3) where a customized script
extracted 128 measurable variables, or features, (distances, angles, and
areas) of each footprint to provide a comprehensive geometric profile.

Each field image was imported (by simple drag and drop) into the
software platform, and then rotated into a standardized orientation
using a horizontal axis provided by joining two designated landmark
points (points 1 & 13). Twenty-five anatomically defined landmark
points were then positioned on the footprint, and from these a further 15
points were derived using a predetermined script. This provided 40
points on each footprint, from which measurements of distances, angles
and areas were then automatically extracted, producing a total of 128
variables for analysis. These variables constituted the ‘geometric profile’
of the footprint.

Table 1 (see 2.4 above) describes the derivation of each measure-
ment (variable).

2.6.1. Sex identification

We deployed a sex classification algorithm based on discriminant
analysis, described in detail by Gu et al. (2014), to assign sex to free-
ranging tiger footprints as a preliminary classification filter prior to
identifying individuals from their trails. We also investigated footprints
variable profiles by sex and age-class using the same approach.

2.6.2. The individual identification procedure

The FIT individual classification model is based on a pairwise com-
parison of each trail with every other trail (Alibhai et al., 2017; Jewell
et al., 2016; Li et al., 2018). Pairwise comparisons for known animals
will include self trails (where both trails compared are from the same
animal) and non-self trails (where each of the two trails is from a
different animal). The process involves two sequential steps. First, a
cross-validated discriminant analysis is used to determine the distance
between the centroid values of pairs of trails, each with a 95% confi-
dence ellipse. Secondly, using the matrix distance from the discriminant
analysis step, a Ward’s hierarchical clustering method that partitions
trails into clusters to minimize within-cluster variance, is used to
generate a dendrogram. The predicted number of individuals is deter-
mined by the number of clusters estimated by the hierarchical clustering
method. The number of clusters is the inflection point of the distance
plot of cluster distances that indicates that the difference in clusters
beyond that point would be large. This is referred to as the “knee of a
curve” method (Salvador and Chan, 2004). To augment the number of
available trails, longer trails were arbitrarily divided into sub-trails for
both captive and free-ranging populations (Alibhai et al., 2017).

The development of the individual classification algorithm is
described in detail in Li et al., 2018. Fundamentally, the process entails
the optimization of three features within the FIT model construct: the
number of variables in the model, the size of the confidence intervals
around the ellipse, and the threshold value of the distances between the
means. Algorithm validation was conducted using holdback trials. The
dataset of 44 known captive Amur tigers was partitioned sequentially
into different ratios of test and training subsets. Using the optimal al-
gorithm generated in FIT, this dataset was iterated 10 times for each
random combination of test/training size, to examine how the predicted
outcome compared with the known test size. After algorithm validation,
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The number of variables extracted from the footprint images as lengths (L), angles (A) and areas. The numbers 01-25 refer to the landmark points and 26-40 to points
derived from the landmark points by predetermined geometric relationships. For example, variables 81-88 were generated at the intersection of two vectors e.g. V81
refers to the angle formed by the intersection of the vector from points 01 to 05 with the vector from points 09 to 13. Areas were generated using the most peripheral
points in each case. Area 1 = whole image, Area 2 = toe 5, Area 3 = toe 4, Area 4 = toe 3, Area 5 = toe 2, Area 6 = pad, Area 7 = points 1, 5, 9 & 13 and the proximal pad
points, Area 8 = points 1 & 13 and the proximal pad points, Area 9 = points 1, 5, 9 & 13 and points 19 & 25, Area 10 = points 1 & 13 to the most distal toe points (3,7,

11 & 15).
Variable Description Variable Description Variable Description Variable Description
Vo1 L 01-03 V33 L 03-07 V65 L 14-15 V97 L 02-37
Vo2 L 05-07 V34 L07-11 V66 L15-16 Vo8 L 02-36
Vo3 L 09-11 V35 L11-15 V67 L13-16 V99 L 26-36
Vo4 L13-15 V36 L 15-19 V68 L17-19 V100 L11-26
Vo5 L 02-04 V37 L 03-25 V69 L 18-25 V101 L11-39
Vo6 L 06-08 V38 L17-27 V70 L 27-28 V102 L 16-39
Vo7 L10-12 V39 L17-28 V71 L 28-29 V103 L 16-38
Vo8 L 14-16 V40 L17-29 V72 L 29-30 V104 L 24-38
V09 L17-18 V41 L17-30 V73 L 01-31 V105 L 24-37
V10 L19-25 V42 L 18-27 V74 L 31-32 V106 L 18-40
V11 L 22-24 V43 L 18-28 V75 L 32-33 V107 L13-24
Vi2 L 20-22 V44 L 18-29 V76 L13-33 V108 L 09-24
V13 L 21-23 V45 L 18-30 v77 L 02-34 V109 L 05-24
V14 L 01-22 V46 L 05-25 V78 L16-34 V110 L 01-24
V15 L 05-22 V47 L 09-25 V79 L 03-35 Vi1l L 01-13
Vie L 09-22 V48 L 13-25 V80 L 15-35 V112 L 36-37
V17 L13-22 V49 L 01-19 V81 A 01&05-A09&13 V113 L 02-16
V18 L 22-31 V50 L 05-19 V82 A03&07-A11&15 V114 L 03-15
V19 L 05-31 V51 L 09-19 V83 A05&01-A24&20 V115 L 03-24
V20 L 22-33 V52 L 01-02 V84 A09&13-A20&24 V116 L 07-24
v21 L 09-33 V53 L 02-03 V85 A03&01-A01&13 V117 L11-24
V22 L 22-32 V54 L 03-04 V86 A07&05-A01&13 V118 L 15-24
V23 L 32-34 V55 L 01-04 v87 A11&09-A01&13 V119 Area 01
V24 L 34-35 V56 L 05-06 V88 A15&13-A13&01 V120 Area 02
V25 L 26-35 V57 L 06-07 V89 A01-22-05 V121 Area 03
V26 L 01-05 V58 L 07-08 V90 A05-22-09 V122 Area 04
v27 L 05-09 V59 L 05-08 VIl A09-22-13 V123 Area 05
V28 L 09-13 V60 L 09-10 V92 A02-25-19 V124 Area 06
V29 L13-19 V6l L10-11 Vo3 Al16-19-25 V125 Area 07
V30 L 19-20 V62 L11-12 V94 A01-24-05 V126 Area 08
V31 L 24-25 V63 L 09-12 V95 A05-24-09 V127 Area 09
V32 L 01-25 V64 L13-14 Vo6 A09-24-13 V128 Area 10

a cluster dendrogram predicted the number of individuals (Alibhai et al.,
2017; Jewell et al., 2016). Trails predicted to be from the same indi-
vidual were color-coded and clustered together on the dendrogram (See
Fig. 5 section 3.6 below, and Supplementary Figs. 3-6).

3. Results
3.1. Data collected from captive Amur tiger

Data were collected from 44 captive Amur tigers of known identity,
age and sex, to form the basis of the footprint identification algorithm
for individual identification. The tigers ranged from 3 to 13 years of age.
Four classes of age were created for the subsequent investigation of age-
related footprint metrics; Class A (<5 years of age), Class B (5-8 years of
age), Class C (8-11 years of age) and Class D (11 to 13 years of age).
Between 7 and 23 high quality left hind footprints were collected from
each individual tiger. Where >10 left hind footprints were collected,
they were divided arbitrarily into sub-trails to provide a larger number
of sub-trails for analysis. Supplementary Table 1 summarizes the data
collected from captive Amur tiger.

3.2. Data collected from free-ranging Amur tiger

Trails were collected from free-ranging Amur tiger, of unknown
identity, at the study sites. Table 2 reports the trail ID collected for each
trail. As described above (Section 3.1) sub-trails were formed where >10
footprints existed in any one trail. For example, the table indicates that
using the 25 left hind footprints from trail MW09, we were able to derive
four sub-trails. Section 3.5 below explains how the sex classification for
images and the resulting designations for each trail were made.

3.3. Data validation to determine the optimal size for algorithm training
and test sets

Data validation was performed on the captive Amur tiger dataset to
determine the optimal number of footprint trails required for the algo-
rithm training set and test sets that could provide an accurate population
estimate. Fig. 4 shows the result of a holdback trial partitioning test on
training sets for 44 captive Amur tigers. Using the algorithm generated
in FIT, the analysis was iterated 10 times for each combination of test/
training size, with randomly selected trails, to examine how the pre-
dicted outcome compared with the known test set size. The figure shows,
for example, that then the test set size (y axis) comprises trails from 4
tigers, and the test/training set size comprises trails from 04/40 tigers,
the predicted test set sizes are very similar across a range of partitioning
trials. However, when the test set size is 36 tigers, and the test/training
ratio 36/08 tigers, there is a wide range of predicted test set sizes and the
mean of the predicted test set size diverges from the actual test set size.

Optimal classification accuracy was obtained when the test set size
was smallest relative to the training set. However, even when the test to
training set ratio was 32:12, the predicted value was close to the ex-
pected value, demonstrating the robustness of the model.

3.4. Algorithm training using data from captive Amur tigers

A classification dendrogram was generated using the FIT pairwise
comparison model for 44 trails from captive Amur tigers (Supplemen-
tary Fig. 3). The process was iterated multiple times by altering elements
within the model to generate the fewest misclassifications (Li et al.,
2018). The final classification model correctly predicted 44 tigers giving
100% accuracy. This algorithm was then used to classify the free-
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Fig. 3. The Footprint Identification Technique (FIT) feature extraction window in JMP software for the extraction of variables from the footprint. The left side of the
window holds a template for the position of landmark points and the scale markers. The right side of the window, the active section, allows the drag and drop of
sequential field images for analysis. Twenty-five landmark points and fifteen derived points are positioned on each footprint.

Table 2

Footprint trails collected from free-ranging Amur tigers in 2012 & 2015/16 at
three different locations, showing the trail label, number of usable left hind
footprints, number of sub-trails, sex predicted for individual images, sex pre-
dicted per trail, image collection date and location site of trail.

Trail No. No. Sex id Sex Image Location
ID usable sub- of designation collection site of
left trails images per trail date trail
hind (M/F)
images

FW1 13 02 2/11 F 2012 A
FW2 12 02 3/9 F 2012 A
FwW3 14 02 2/12 F 2012 A
FW4 13 02 0/13 F 2012 A
MW5 13 02 13/0 M 2012 A
MW6 04 01 4/0 M 2012 A
MW7 06 01 5/1 M 2012 A
FW8 04 01 1/3 F 2012 A
MW9 26 04 25/1 M 2015/16 A
MW10 12 02 11/1 M 2015/16 B
FW11 02 01 0/2 F 2015/16 B
FW12 02 01 0/2 F 2015/16 C

ranging trails (Alibhai et al., 2017).

3.5. The individual classification of free-ranging Amur tigers

Using the algorithm derived from captive Amur tiger footprints, a
trail classification dendrogram was generated for free-ranging Amur
tigers of unknown identity, using the 13 trails collected in 2012 at
location site A (Supplementary Fig. 4). The FIT predicted a total of 7
tigers, 4 females and 3 males, with all sub-trails correctly classified.
Footprints for the trails were independently subjected to sex discrimi-
nation analysis (Gu et al., 2014).

Table 2 (see also 3.2 above) shows the distribution of footprints
classified as male or female for each trail. The trails and sub-trails for
free-ranging tigers were classified by sex as F (female) or M (male) using
the method described by Gu et al., 2014. A total of 212 footprint images
were collected from 12 trails and subjected to sex discrimination anal-
ysis. Based on classification within trails, of the 121 images 11 were not
consistent with the majority of images in each trail, giving an accuracy
of 90.1%. An analysis for females gave 8 inconsistently assigned images
out of 60 (accuracy of 87%). For males, 3 images of 61 were inconsis-
tently assigned giving an accuracy of 95.1%.
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Fig. 4. Holdback partitioning trials using test and training sets. The test set size
was plotted against itself (black circle), against the predicted value for the test
size (black X) and against the mean predicted value for each test size
(blue square).

A trail classification dendrogram for individual identity was gener-
ated from 4 trails collected at sites A, B and C, from free-ranging Amur
tigers in 2016. The FIT predicted 4 tigers with all sub-trails classifying
correctly (Supplementary Fig. 5). A trail classification dendrogram was
generated from 11 trails collected from free-ranging individuals in 2012
and 2015/2016 and predicted 11 individuals. All self-trails were clus-
tered correctly together (Supplementary Fig. 6).

3.6. The classification prediction of Amur tiger using images collected
from both captive and free-ranging individuals

All footprints from both captive and free-ranging Amur tiger foot-
print were then analyzed together, with a resulting 6 trail mis-
classifications. The analysis predicted of 54 individuals against the
expected 55 individuals (44 known captive, and 11 were predicted from
free-ranging prints). In this analysis of all individuals, the classification
accuracy of self-trails for free-ranging individuals remained unchanged
and was similar to the results of the analysis performed for captive and
free-ranging animals separately.

3.7. The distribution of total footprint area by sex, for captive and free-
ranging Amur tigers

Using linear discriminant analysis, we identified Area 1, the total
footprint area, to be the most significant measurement (assessed by the
highest F-ratio) differentiating males from females. Although there was
natural variation in Area 1 within each sex and age class category, the
distribution pattern for the males and females exhibited a marked dif-
ference. The Area 1 measurement for adult females (> 3 years) across all
age classes did not vary markedly. However, for males, age classes A and
B exhibited the highest means, with a clear decline in Area 1 size in the
older age-classes. At 12 years of age, the male footprint size (Area 1) was
significantly smaller than that for individuals in age classes A & B
(Anova Fy 199 = 30.49, p < 0.0001) (Fig. 6).

A similar difference between male and female free-ranging Amur
tigers emerged (Fig. 6). Trails FW2 & FW3 which were classified by FIT
as belonging to the same female appear to have very similar distribu-
tions and means.

4. Discussion

4.1 The FIT described in this paper offers some advances over
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previous analytical footprint identification techniques in the following
ways: it has developed a standardized protocol for footprint collection
thus reducing observer bias in processing, it extracts more metrics from
each footprint thus providing a greater opportunity to select truly
discriminating metrics and develop a robust training set, it analyses
more footprints per animal in the training datasets to adjust for indi-
vidual variation, it integrates algorithm validation, and it offers these
advantages within a fully integrated software interface that reduces the
risk of subjective interpretation (Alibhai et al., 2017).

4.1. Individual identification model determination and predictions

Our best-fit model correctly predicted the number of captive tigers.
Without information on the identity of the free-ranging tigers from
whom we collected trails, we were unable verify our prediction for their
numbers. However, the derivation of 128 variables from each footprint,
together with a statistically robust model and data validation steps
suggested that the classification model had correctly identified the free-
ranging Amur tiger trails. In addition, the predictions given by analyses
done separately for 2012, 2015-16 and both together were consistent.
Furthermore, there was agreement between the classification of trails by
sex first, and then by individual identity. Nevertheless, further valida-
tion of this technique for application to free-ranging tigers should be
undertaken using a population of known individuals and, ideally, testing
alongside other techniques that have already been validated in the same
conditions.

Further algorithm validation was undertaken using holdback trials,
to establish the minimum number of trails required for testing. Although
the predicted mean for each test:training set size was close to the actual
test size up to the 32:12 combination, after a ratio of 20:24 the amount
of variation in the sequential trials increased, potentially resulting in
reduced algorithm accuracy.

4.2. Sex and age determination

We used the sex identification method described by Gu et al. (2014)
to investigate the relationship between the area of the foot (Area 1) for
the two sexes across a range of age-classes, where the FIT algorithm for
sex determination gave 98% accuracy for individual footprints. The
larger size of Area 1 in males is consistent with the sexual dimorphism in
Amur tigers - mature males are significantly larger than mature females
(Sunquist and Sunquist, 2002). Investigating this variable by sex and
age-class revealed a decline in Area 1 size in older males. It is possible
that a decrease in footprint size might signify a contraction of ligaments
or increase in foot musculature with age, but one might reasonably
expect this to apply to females also and the observation remains to be
explained.

Over decades of monitoring Amur tigers in both Russia and China,
field workers have identified Amur tigers by sex or individual using
simple measurements of front pad width, using assumptions about in-
dividual range (Hayward et al., 2002). A limitation in this system has
been the difficulty in discriminating between adult females and sub-
adult males. The interaction between age and sex for footprint identi-
fication is thus of practical importance in understanding Amur tiger
populations. As an example, the Amur Tiger Monitoring Network (Zhang
et al., 2012) seeks to understand the ecology of resident female Amur
tigers as an indicator of local population recovery (Goodrich et al.,
2010). Our study demonstrated that FIT was able to identify individuals
(including sub-adult males and adult females) with >90% confidence
(Fig. 5) and that despite overlapping ranges of measurements for foot
areas, the means for subadult males and adult females were sufficiently
different to be discriminated using trails of footprints.

Sex identification was also used as a filter to help establish the
identities of Amur tigers from free-ranging trails. 5 of the 12 trails
exhibited consistent sex classification for all footprints, with the
remainder exhibiting a clear majority for either male or female. This also
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Fig. 5. The trail classification dendrogram for captive and free-ranging (2012 and 2015/6) Amur tigers showing the predicted total number of individuals (54), and
the classification of self and non-self trails. X indicates misclassified trails (7 of 106).

provided consistency with the individual identification of trails.

4.3. The use of footprints for censusing and monitoring big cats

The use of animal footprints (‘pugmarks’) for tracking and moni-
toring has been described as the origin of science (Liebenberg, 2013) and
was undoubtedly instrumental in human evolution. In 1966 Indian
forester S.R. Choudhury (Choudhury, 1970, 1972) developed a basic
‘pugmark’ census for monitoring the Bengal tiger throughout India.
Thousands of foresters, members of local communities and many with

tracking skills, traced or collected plaster casts of footprints found. They
arrived at local, regional and then national population estimates
through simple visual comparisons, tracings, and/or basic measure-
ments of the footprints collected, in combination with local knowledge
that enabled assumptions about local tiger ranges. Singh (1999)
remarked that this technique yielded accurate results in a cost-effective
and practical manner.

Karanth et al. (2003a) argued that this survey method was statisti-
cally unreliable because of three fundamental failures: a failure to
identify all possible footprints, a failure to correctly identify the
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appropriate footprint, and a failure to recognize individual tigers. An
argument was made for a national transition to camera-trapping tech-
niques. and the all-India pugmark census was replaced by sampling
smaller areas using camera-traps. Tiger population estimates decreased,
and it was widely reported in the press that the pugmark technique had
resulted in over-counting (Karanth, 2003).

Whilst the basic approach of the pugmark technique led to inaccur-
acies of population estimates, we have demonstrated in this study that a
robust and statistically valid approach such as FIT, if included in a
methodological framework that can satisfy sampling-based survey
methodology requirements (Gopalaswamy et al., 2019), has the poten-
tial to be a useful tool to provide optimal census and monitoring capa-
bility through tiger ranges. When FIT is used by data collection teams
that have even rudimentary tracking skills, it can overcome the reser-
vations put forward about the use of footprints for conservation moni-
toring (Karanth et al., 2003). For example, field operatives with very
basic training or accompanied by trackers can identify left and right
hind footprints and collect images according to the FIT protocol (an app
is being developed to collect the necessary images with smartphones).
The FIT integrated software provides local ecologists with the ability to
identify individuals, sex, and age-class. If trackers are not available to
cover all the required areas, footprints could be used as ‘marks’ in mark-
recapture protocols in selected areas, in much the same way as camera

trap images are (Jewell et al., 2016). Footprint identification is also
independent of coat-pattern, as has been described for the mountain lion
(Alibhai et al., 2017) and work is underway to monitor this species in
snow substrates in the Americas. Our experience has shown that het-
erogeneity of substrate can be accommodated if representative data
from the different substrates are included in the model.

FIT can also be deployed at different levels of granularity (Jewell
etal., 2020). Where a census is required, the collection and processing of
footprints can provide a prediction of the total number of animals rep-
resented by those footprints. Where information on the movement or
behaviour of individual animals is required, footprints are first mapped
to a known individual and thereafter it can be monitored using footprint
identification. For example, in reintroduction or translocation settings
where individuals can be characterized prior to release, their subsequent
movements can be ascertained by footprints. These ecological data can
provide insights into the range changes, activity levels, interaction with
other individuals and many other crucial aspects of success of reintro-
duction in the long term.

Footprint identification techniques, like other monitoring methods,
have constraints. Where footprints do not form, or are visible for only a
short time, data collection may be challenging or even impossible.
Furthermore, FIT requires footprints that have clear outlines of toes and
heel pads which may not always be possible in unsuitable substrates. In
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situations where field data collectors have no experience locating foot-
prints, or there are no local trackers available, it may also be difficult to
collect enough data. The existence of footprints is also dependent on the
vagaries of the weather, and so planning a short window of fieldwork
with no flexibility can present further challenges. In areas where pop-
ulation densities are extremely low (as reported in this study), finding
enough signs (in this case footprints) for a full survey may be chal-
lenging, and require more effort, but this applies to most if not all
techniques for monitoring populations that exist at low density. No
longitudinal studies have yet been undertaken to assess the variability of
footprints over time and this is an area worthy of investigation. Our
preliminary field observations suggest that frequent monitoring might
allow changes in track size and shape over time to be incorporated in the
database and resulting identification algorithm.

There are few studies comparing the efficacy of many different non-
invasive approaches carried out simultaneously in the same area.
However, one comparison of six methods for estimating Amur tiger
abundance in Russia’s Sikhote-Alin Biosphere region was undertaken by
Riley et al., 2017. Camera-trapping, DNA from hair and feces, scent-
tracking dogs, morphometric track identification and track index sur-
vey methods were assessed. However, a paucity of data resulted in
effective evaluation of only three approaches: camera-traps, DNA
collection and track index surveys. DNA collection and camera traps
were considered statistically acceptable but performed poorly on in-
dicators of cost and logistics. In contrast, track index surveys proved the
most efficient logistically and financially, and were able to be applied on
landscape scales, but failed to satisfy the statistical criteria set by the
team. The track ID method, based on an objective approach described by
Sharma et al., 2005, failed because survey teams were unable to obtain
enough data at the field site during the study period.

Camera-trap techniques may also present constraints. Where unique
coat patterns or other morphological features are absent, camera traps
are impractical for identifying individuals. Even when morphological
features are present, identification may be challenging. Johansson et al.
(2020) reported that identifying individuals with unique coat patterns
from camera-trap photos may not be as reliable as previously believed,
citing a lack of empirical evidence to verify the assumption that in-
dividuals (even those with unique coat patterns) are accurately identi-
fied in studies that rarely report how identification was performed.
Johansson et al. (2020) also noted that there is no baseline measure of
classification error in these species because studies have not been un-
dertaken to measure classification accuracy in a population of in-
dividuals with known identity. Thus, it is currently unknown how much
observational uncertainty is associated with classifying images of spe-
cies with individually-unique markings, and how this subsequently in-
fluences confidence in abundance estimates. However, as machine
learning and computer vision techniques advance it is likely that they
will offer increasingly reliable alternatives to human assessment for
camera-trap images (Hermona and Sharmab, 2021) and possibly also
footprint identification. Another potential camera-trap consideration is
that tigers have been noted to avoid them, and potentially any such
intrusion may limit the ability of conclusions to be drawn from animal
behaviour obtained by camera-trapping (Meek et al., 2016; Wegge et al.,
2004). Caravaggi et al. (2020) review camera-trap literature and iden-
tify three key challenges: disturbance caused by cameras, variation in
animal-detection parameters across camera models and biased detection
across individuals and age, sex and behavioural classes. Finally, and
perhaps most critically for sustainable conservation initiatives,
camera-traps rarely engage the traditional ecological knowledge and
skills of local communities in the way that tracking techniques can. They
are extremely sensitive to changes in layout design and set-up, requiring
expertise that is not often found in local communities. Jhala et al. (2021)
discuss at length the importance of engaging local communities in the
cause of tiger conservation.
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4.4. Field application potential for Northeast China

We have described the application of the FIT to identify and monitor
individual Amur tigers in the wild. Amur tiger populations are very
sparsely distributed over a huge and generally resource-poor area,
particularly in Northeast China. This delivers specific challenges for
monitoring. While SECR offers freedom from the need to prove a ‘closed’
population, it requires density estimations to be based on an explicit
spatial component of each individual’s detection history and a defined
state-space over which density is estimated. Because of these additional
requirements, SECR models can be more data hungry than the tradi-
tional closed capture-recapture models. Augmenting data collection
through citizen science could improve the reliability of such estimates
(Green et al., 2020). Footprints have traditionally been used as part of a
monitoring strategy in these areas (Hayward et al., 2002) and FIT offers
the opportunity to augment data from camera-traps or other non-
invasive techniques, and when including local community trackers
and hunters, it strengthens the reliability of detection and identification
of individuals. As global tourism recovers from the impact of the Covid-
19 pandemic, the upcoming development of a user-friendly FIT data
collection app to record footprints will facilitate the engagement of this
growing resource. One often overlooked issue in the discussion of
monitoring approaches was raised by Riley et al. (2017) who noted that
while occupancy patterns (derived from sampling) may be sufficient for
population monitoring, nearly all government agencies are pressured to
report absolute abundance. The cost and logistics of providing these
figures must be taken into account in resource-poor areas. In addition,
relying predominantly or exclusively on a method that depends on
external experts (DNA analysis, camera-trap analysis) ignores the ad-
vantages conferred when conservation infrastructure is self-reliant. In
parts of the world where wildlife management funding competes closely
with issues of human health and poverty, cost limitations of a method
become significantly important.

4.5. Comparative material costs for implementation of FIT

The equipment required for the implementation of FIT is minimal. A
basic digital camera (e,g. a Sony CyberShot) or smartphone can capture
data at a minimum recommended 1600 x 1200 pixels. A metric scale is
required. Images can be stored on an external or cloud-based drive. A
standard home-office laptop computer can run the required analyses. In
areas where human resources are already deployed for monitoring at-
risk species (eg anti-poaching or community-outreach), data collection
can be integrated at very little extra cost. In areas where this is not the
case, salaries for data collectors are required for fieldwork, but this
comes with the benefits of community capacity-building. The costs of
implementing camera-trap or eDNA survey for low density populations
may be considerably higher but will vary greatly depending on the area
to be surveyed and local costs. Jewell et al. (2020) offered a qualitative
comparison of commonly used rhino monitoring techniques, in terms of
their speed, accuracy, estimated relative cost and suitability for local
conditions, that might provide a template for a future big cat monitoring
study.

4.6. Final considerations

There are many considerations to be made when selecting a moni-
toring method for big cats, and a full review is beyond the scope of this
paper. It is clear from the literature, however, that all available tech-
niques for censusing and monitoring present both challenges and op-
portunities. We recommend the deployment of a toolbox of non-invasive
and cost-effective techniques best suited to local resource availability,
environmental constraints and the reporting requirement. For small
areas, monitoring individuals with distinguishable coat-patterns, where
there is a relatively high population density and sufficient funding,
camera-traps may be preferable. If those areas present opportunities for
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footprint collection, FIT could be combined with the traps for a broader-
spectrum survey. For regional and landscape-scale areas where re-
sources are scarcer, and more cryptic and elusive animals live at low
densities, objective footprint identification and scent dogs, with selec-
tive use of eDNA or camera-traps combined into a statistically accept-
able but accessible framework may be preferable (Lyet et al., 2021). In
many situations, a combination of camera-traps with footprint identifi-
cation technologies, both non-invasive and thus animal-friendly, could
provide an ideal basis for a broad-spectrum community-based survey
and we intend to identify research partners to test this combination in
the field. The rapid emergence of computer vision techniques promises
to hugely augment both the speed and breadth of data processing for
both footprint and camera-trap techniques. Beyond selection of the ideal
monitoring tool(s), it is worth reflecting that where population declines
are linked with human conflict, local community engagement in the
conservation effort can be transformative (Dheer et al., 2021).
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